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ABSTRACT

The couventional &lecirodynamic equations are consistent with the

usual problem of ensrgy and momentum flow ‘tmduga a voundary.

For the
problem of integrating the energy and momentum over a moving volume of

field, where the anomalous factor of 4/3 frequently arises, the
conventional expressions are incorrect.

The difference between ‘c.hese
two ‘types of problems is closely related to the difference between

:.nternal energy and enthalpy in thermodynamics.
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IRTRODUCTION

Blectrodynamics is an extensive body of knowledge that hes obvious
and substantisl utility. There are, however, some problens that have
never been adequately resolved - such as\ the electromagnetic mass of an
8lsGirun, Tuis prehlew was studied prior to relativity, but the
anomalous nature of the answer was not appreciated until the mass-energy
equivalence of relativiiy was incorporated. When the electromagnetic
nomentum of an electron is expressed as a product of the translational
velocity and the equivalent mass of the eleciric~field energy, a factor
of 4/3 is also obtained, This factor of 4/3 is the essence of the
electromagnetic-mass prohblem of an electron, and a wide variety of
explanations have been given for the presence of this factor. Some of
these explanations are currently included in a number of widely used
textbooks. =¥

Although the electromagnetic mass of an electron has received the
most attention in recent years, there are actually a number of related
problems. The paraliel-plate capacitor is a classic problem that was
investigated as part of the search for an ether. The investigation of
Trouton and Noble5 was based on the variation of electromagnetic energy
with the angle betweesn the field direction and the velocity through the
ether. Conservation of energy indicated that a torque was required_ o
supply the energy chenge with angle. Trouton and Noble looked for wais
torque, but found nothing beyond residusl electrostatic effscts.

sxthough the problem was formulated in terms of electromaznetic energy
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by Trouton and Noble, it can also be formulated in terms of
electromagnetic momentum. This latter formulation was used by Lorenta,
who, in relativistic terms, showed that the electromagnetic momentum can
be anywhere from zero to twice the product of velocity and equivalent
mass of the electric-field ensrgy, agein depending on the aﬁgla of the
electric field with the velocity? In the present framewnrk of
relativity, of course, the velocity would be relative to an observer
instead of an ether.

The anomalous factor of 4/3 is usually given in comnection with the
electromagnetic mass of an electron, but it actually applies to any
radially symmetric electric field and is closely related to the momentum
variation obtained for the rotation of a parallei-plate capacitor. Some
of the explanations that have been given for the factor being L/3
instead of unity in the electromagnetic momentum of an electron are:
that the field near a single elecironic charge obeys different laws than
the macroscopic field volumes normally considered in classical
electrodynamics, that there is a non-electromegnetic mass in an electron
as well as an electromagneiic mass, and that the difference is accounted
for by the radiation reaction. Such explanations can be countered by
consi@ering radially symmetric configuratlions other than the field of an
electron. The explanation of unknown laws for the field near a single
electronic charge can be countered by assuming a field produced by a
large number of charged particles, so the field can be of the

macroscopic size thalt is clearly in the domain of classical




electrodynamics. The possible explanation of the electron having none
electromagnetic mass can be countered by using a charged body with a
very large potential, so that the equivalent mass of the eleciric-fisld
energy is significant compared to the rest mass of the charged particles
that produce the field. The radiation reaction explaunaiicn con be
countered by usling & sphericalecapacitor configuration with the electric
field confined to the volume between the two electrodss. Such a
configuration will have negligible radiation at wavelengths long
compared to the spacing Set.ween the two electrodes, and these
wavelengths can be made the important pa:ft of the radiation spectrum by
using long times for acceleration changes. | Because these explanations
can be shown unsuitable for the general problem of radially symmetrioc
electric fields, consideration should be given to finding the fault in
the basic concepts of electromagnetic momentum and energy - instead of
just the application of these concepts.

The approach used herein for the analysis of elsctromagnetic
problems, inecluding the one of momentum, is to construct a physical
model for electromagnetic fields. The central idea of this approach is
simply to take the conventional concepts and analytical methods used for
physical objects and - with & minimun of modification - applying them to
fields. In short, treating a field as a physical object. This approach
may seem uninspired, but it results in substantial departures Irom
conventional electrodynamic theory. The justification for this approach

must be the same as the Justification for any new approach - the ubility



of the results obtained. The aporoach used herein shoula be justified
if a class of problems that previously gave anomalous resulis could
thereby be explaineds The greater understanding that would presumably
accompany such an explanation should also result in & sounder foundation
for future work.

By limiting the problems examined in this paper to a single field
at a time, woving withoul acceleration at a velocity small compared to
that of light, the essential features of the physical-model approach are
displayed with a minimum of theoretical diétraction. SI units
(rationalized mks system) are used throughout this paper.

CONVENTIONAL ELECTROMAGNEIIC APPROACH

In order to compare electromagnetic field mass as indicated by the
two theories; it is necessary to recapitulate some electromagnetic
theory. Analyzing static fields with physical parameters such as energy
density and stress has been found convenient and effective. For an
alectric field,

p= %GQE?, (1)
o, = 3¢,E, (2)
oy = - %foEz. (3)

These perameters are the field energy densily, the Maxwell siress normal.
to the eleciric~field direction, and the Maxwell stress paréllel to the
electric-field airection., Compression is assumed to be & positive
stress, so that tension is a negative quantity. Any three-dimensional

electromagnetic field can be resolved into three mutuslly ozthozonal
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components, with each component parsliel to one of the three orthogonal
spatial coordinates. Consideration of field strengths and siresses for
only the .directions parallel and normal to the field direction Acan
therefore give results of general utility.
The masswenergy equivalence of relativity indicates a field at rest
has an equivalent mass of
m, = &/, - (&)
where the field energy € is obtained by integrating the field energy
density p over the volume of the field 7,
é = / p dar (5)
The complicated nature of electromagnetic mass becomes evident when
moving fields are considered. The energy flow is obtained by
integrating the Poynting vec‘ﬁor |
S = EXH (6)
over the closed surface through which field energy is flowing. The
related equation for electromagnetic-momentum demsity is
g = ExH/e*, (N
so that the momentum P of a field is obtained by integrating  over the
volune of the field.
7= / B a7 (8)
Although the preceding two equations are widely used and accepted as
definitions of eleciromagnetic momentuwm, there are some matnematical
amblguities associsted with thelr z’:.se.? The momentunm problemns mentioned

in the Introduction, then, might be resolved by a change in these



squations. The approach used herein, though, will only consider the
effects of using a physical model.

The fieslds of both a radiéliy_ symmetric configuration and a
parallel-plate capaciltor will be considered in the electromagnetice
momentum calculations. To make the physical impilcetions more evident,
however, the simpler model of the parallel-pia:ce copozitor will be
considered first. Assume the capacitor consists of two square plates of
length 1 on each side, with the spacing s the distance between the
parallel plates, The fringing and other external-field energy can be
made small compared to the field energy between the plates by assuming
s<<1l.

If this capacitor moves relative to the observer with a velocity Yy

parallel to the electric-~field direction, as indicated in figure 1, the

(=

Translationsal
velocity

Pigure 1. -~ Velocily parallel to the slectric.field direcition.
Lorentz field transformation will result in no magnetic field. The
momentun density will therefore be zero, and the tolal momentum of the

uniform-field region belwsen the plates is

Py =0 (9
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for the parelliel-iieid orientation.
If the capacitor now moves normel to the electrice.field direction,

as indicated in figure 2, The Lorentz transformation results in a

Translational
velocity

H%;’Hf}

('“)

Figure 2, = Velocity normal to the electric-field direction.
magnetic fleld. Assuming that the velocity v, is small compared to the
velocity of light e so that the results are applicable to the classical
regime, the Lorentz transformation gives the magnetic field as

H= ¢Evy (10)
The electromagnetic momentum for the unifom-i‘iald volume 7 between the
parallel plates can be evaluated from equations (7), (8), and (10) as

P = eoEzvof/c?'. (11)

This result obviously differs from equation (9). The nature of this |
difference can be made clearer by expressing the preceding momentum in
terms of the field»gnsi'gy equivalent mass. For V< <c, the energy in
the electric field of this capacitor can be obtained from equations (1)
and (5).

€ = 3¢ BT (42)

The equivalent mass of this ensrgy is



n, = %eoﬁz'r/eze (13)
If equation {41) is written in terms of this equivalent mass,

Py = 2mg Ve (14)
Bquations (9) and (14) show the momentum variation with orientation that
was mentioned in the Introduction. 4As was also indicated in the
Int}oduc"tion, these resulis have been in existence for many years.

According to the maAss-energy equivalence of relativity, 2 quantity
of field energy would be expected to have & momentum m v . Because
neither equation (9) nor (il) agrees with this expected value, two
interpretations of the .rasul‘hs appear possible, Either the mass-energy
equivalence does not apply to electromegnetic field energy in the same
way that it does to other energies, or there is something wrong with the
conventional formlation of electromagnetic momentum. The author's
contention is the latter.

The momentum results obtained for a parallel-plate capacitor can
easily be applied to a radially symmetric field configuration. Any
electric-field energy can be a.ﬁalyzed as three mutually orthogonal
componénts.

$e B = -%EOE; + %eoEg + $e B (15)
Integrated over .*ches entire fisld volume, the emergy of & radially
symmetric field can be ifreated as if it were divided equally between the
three components. The velocity Vo Can be assumed darsilel 1o one of
these compounents, so that one~third of the fisld energy can clearly be

associated with a corponent parallel to motion and Two-tnirds associated



with components normal to motion. Thus one-thivrd of The Iileld energy
will, in sccord with equation (9), have no womentum. The remaining Two-
thirds will, in accord with eguation (14), have twice the momentum
expected from the equivalent masé of that field energy. The momentum of
& radially symmetric configuration, in terms of the equivalent mass of
its entire electric-field energy, is therefore
pP= (4/3)mevo. (16)
The factor of 4/3 instead of unity in the preceding equation is, of
course, the basis of ‘thef electromagnetic-mass problem for an electron.
As indicated in the derivation, though, the result actually applies to
any radially symmetric electric-i‘ield configuration.
PHYSICAL~MODEL APPROACH

4 velocity of definite magnitude and direction can be attributed to
every macroscapic physical body by an observer. A4 physical approach to
fields, then, should define a similar velocity for each macroscopic
field element. It is tmume that veloeity effects are included in
classical electrodynamics by the Lorentz field transformations. A4As
shown in the preceding section, though, this inclusion of velocity
effects does not give a field momentum that is consistent with our
concepts of momentum for physical bodiss.

4 field velocity is easy to define for some field configurations,
and more difficult for others. For exzample, the electric-iield energy
of a charged body extends over a large andléerhaps infinite voiuwe, but

the bulk of it is localized near the body. Moving a charged body from-
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one location to another will thus move émergy in o similar manner, LI
the field of a charged body is to be treated as a physical object, it
must - with allowance for propagation of acceleration disturbances -
move with the charged body. A charged parallel-plate capacitor would be
.another example of the field motion being clearly assoclated with the
notion of a physical body..

A moving field can be thought of‘as a moving fluid, with the word
"fluid" used in its most general sense. To describe the fluid
properties of an electiric or magnetic field in coaventional terminology,
it has no viscosity and it can be converted completely into work. The
entropy of a classical electromagnetic field must therefore be zero, an&
any flow process for a field mmst be isentropic. One other major
departure from most fluids is the non-isotropic nature of field
stresses.

The rigérous treatment of energy transfer with a moving fluid has
long been a part of thermmodynamics, and for this reason certain concepts
of thermodynamics will be used as a basis for energy-transfer
calculations with a moving fieid. Treatment of thermodynamic energy-
transfer problems can be divided into flow and non-flow categories,
depending on whether or not the energy-sevaluation boundery is assumed to
be stationary relative to the fluid. The essential feature of a flow
treatment is the evaluation of the rate at which energy crosses a
boundary with a moving fluid, while a non-flow treatment is concerned

with the integration of energy over the volume enclosed by the boundary.
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Meny problems can be approvached'. with either a flow or non-{low
treatment, as long as the treatment is applied in & rigorous manner.
Certein problems, though, are particalarly suited for one of the two

_ treatments and, in this sense, may be called flow or non-flow problems.

A non-flow treatment in electrodynamics would be one in which the
boundary is located so that the field does not move across it. & moving
capacitor falls conveniently in the non-fiow ’category by assuming a
boundary far from the capaéitor, so that no significant amount of field
falls outside the boundary. Although motion of a boundary relative to
an observer is not usually coasidered in thermodynamics, the absence of
flow across that boundary is sufficient to define the treatment as none
flow. The boundary could thus move with the moving capacitor and the
problem would still be in the non-flow category.

The energy of a fluid in the non-flow thermodynamic treatment is
simply the total internsal energy of that fluid in the volume under
consideration. For an electric field with Vo<<e¢, the "internal energy®
can be obtained from the energy density of equation (1). The total
energy in the uniform-field volume + between the electrodes of a
parallel—pllate capacitor is thus

¢ = 4e B, (17
The équivalen“c mass of this energy is
mg = 3¢ E°7/c. (18)
(The kinetic energy of the moving field mevé /2 would result in an

aaditional msss of mgvi/2¢®. The assumption of vy<<¢c, though, makes
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these terms negligible compared to the energy and equivalenl mass shown
in equations (17) and (18).) The momentum that would normally be
associated with the motion of this mass at velocity v, is myv,, or

p= %eOEzwgf e, (19)
Because energy densiéy is not a function of field direction, field
direction has no effect on this momentum. 4lsc, although this momentum
is the value that would be expecited from the mass-energy eguivalence, it
agrees with neither equation (9) ncrv(ji). As indicated earlier, the
author prefers a strict adherence to the mass-energy equivalence when a
choice must be made between this equivalence and the usual definition of
electromagnetic momentum (equation (8)). Equation (19) is therefore the
form preferred by the author for the momentum of the electric~field
energy in a parallel-plate capacitor. |

A radially symmetic eleciric-field configuration, such as an

electron, also falls conveniently in the non-flow category. It is true
that the field of an electron extends for an indefinite distance, but
the tulk of the field energy - and thus the field momentum - is confined
to a small volume near the electron. The electron itself therefore
defines the average location of the field energy of the electron, and a
boundary located far from the electron will enclose substantially all of
this field energy. Use of the non.flow approach for an electron, with
V,<<c, gives a total electric-field energy substantially the same as
its stetic.field value. The momentum of an elsctron would be simply the

product of the equivalenl mass mg of this total energy and the velocity
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Voo The factor 4/3 would therefore not appear whean the momentum of the
eleciron is evaluated using non-flow concepts.

Bnergy transfer in the thgrmodynamié flow treatment involves not
just internal energy, but also flow work. Flow work is the energy
raquirad to push the fiuid across the boundary, as indivetcd Lz figiwra
e

Boundary

Pressure . Fluld
r volume

5

Flow work = (Pressure)X (Fluid volume)

Motion

Figure 3. - Flow work
The pressure is isotropiec in the fluids normally considered in
thermodynamics, but only the component of pressure in the direction of
fluid motion contributes to the flow work. Inasmuch as the internal
energy' of a field is typically given per unit volume, the flow work
should also be evaluated in this manner. The fiow work per unit volume
of a field is simply the field stress parallel 1o the field motion
involved. The boundary for energy-{low evaluation must be a closed
surface to assure inclusion of all flow. PrOCesses., <The boundary in a
thermodynamic flow treatment is also usually assumed stationary relative
to the observer, which, in general, will be convenient for

electromagnetic provlems.



The radiation of eleciromagnetic enérgy is obviously suited to a
flow treatment. Thé boundary cen be at the radiation source, at an
absorber, or at any sarfacé of energy-flow evalustion between the two.
Electromagnetic radiation, though, travels at the velocity of light,
which is beyond the scope of this paper.

Far a flow problem in the classical regime, an electric field can
be assumed to be moving across a boundary at a velocity smell comparsd
to that of light. For example, the slow addition of electrical charge
to a charged body would presumably involve an electric field moving at
low velocity. .The total energy flow across a unit area of boundary
normal to the field velocity v, is, from thermodynamics, the sum of
internal-energy and flow-work terms, The energy flow S¢ for an electric
or magnetic field can thus be defined

Sp = (o + 9)vy, (20)
With v;<<e, the kinetic energy term usually given for moving fluids in
thermodynamics is negligible compared to the internal energy term. The
stress o is, of course, the stress in the direction of v,. The quantity
A + o is analogous to enthalpy, a state function in thermodynamics. The
non-isotropic nature of electromagnetic stresses, though, prevents the
definition of a similar state function in electromsgnetic problems.

The significance of equation (20) can be demonstrated by
consldering an electric field with vardious orientations relative to the
velodity, As mentioned earlier in this paper, any eleciric or magnetic

field can be resolved into orthogonal components. Consiceration of
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field orientations p&raliel and normal to the field velocity will
therefore give results of general utility. Assume first an electric
field parallel to v,, and use equations (1) and (3) to substitute for
energy density and stress. The energy densily and stre'ss cancel to give
a net energy flow of
(Sgdy = 0. (21
For a field normal to v,, equation (2) should be used for the stress.
The internal energy and stress add in this.case, giving
(S.t')-!- = eoEgvo. (22)
Both of the preceding results agree with the conventional approach
using the Poynting vector of equation (6). In conventional terminology,
the electric field is unchanged by a velocity parallel to itself and
there is no magnetic field. With no magnetic field, there can be ‘no
enorgy flow. For the transvere%e orientation, the velocily v, normal to
the electric field gives a magnetic field of €y Ev,, so that the Poyating
vector is eoEzvo.
The energy flow Sg can thus be identified with the Poynting vector
S. That is, the conventional electrodynamic formmlation of energy flow
agrees with the thermodynamic flow treatment. It is significant that
the admonition fregquently given in elecirodynamics -~ Lo make sure that
the boundary for energy-flow evaluation is a closed surface - is the
same one given for the flow {resitment in thermodynamics.
Although the energy density of the eleciric field is defined by

equetion (1), a similar quantity o, can be defined using the preceding
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euergy flow equations.
Py = Sf/vo' (23)
Dividing this "energy demsity" by c¢® to obtain a "mass density®, and

then multiplying by v, gives a momentum density ge.

B = Sf/ca (24)

With the substitution of the energy flows from equations (21) ana (22),
_(-gf)li = 0, (25)

(ge)y = &E vy /c% (26)

These results agree with the conventional momentum density of
equation 7. The momentum density gp can thus be identified with the
electromagnetic momentum density g.

The statement was made earlier in this paper that many problems can
be approached with either a flow or non-flow treatment. For example, &
moving parallel-plate capacitor is well fsuited for a non-flow treatment,
but it can also be. analyzed with a flow treatment, If the parallel-
plat.é capacitor is assumed to be moving with the field parallel to the
velocity (fig. 1),-the internal energy and stress for the electric field
cancel in eguation (20). The net energy flow from the electric field is
therefore zero ,' as shown in eéquation (21). The boundary for energy-flow
evaluation must be a closed surface, which means that all flow energies
crossing & boundary must be included. A parallel-plate capacitor must
have insulating supports to resist the tension paraiiel to the field, as

indicated in figure 4. For equilibriun ‘between the two forces, the



Figure %. - Opposition of field and support forces.

tension force of the field must be balanced by the compression force of
the supports. The flow work of a volume moving across a odoundary can
also be expressed as the product of a force (the stress times the area)
and the distence over which the force acts. The equality of tension and
compression forces thus results in the support flow work canceling the
field flow work, leaving only the internal energy of the non-flow
treatment.

For the transverse fisld orientation (£ig. 2), the compression
force of the field is balanced by the tension force of the capacitor

plates, as indicated in figure 5. The capacitor-plate flow work thus

=0 R
— Pl i I
dERRRRRREE

_->.;s§2§§f§§\\\\
o Ammp—— i

™

Figure 5. - Opposition of field and capacitor-plate forces.
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cancels the field fiow work, again leaving only the internal energy of
the electric field.

In a similar manner for a charged spherical body, the tension force
' in the body will yield a flow work that will cancel the flow work of the
surrounding field. The net sunergy will thus again equal the internal
energy of the none-flow trestment.

In case the reader wonders about the distortion energy stored in
these mechanical parts, this distortion energy is proportional to the
strain ( strain = Ax/x) of these parts in the direction of the applied
force. The mechanical parts can be assumed to be very stiff, so that
they are only microscopically strained by the eleciric field forces.
The distortion energy is then negligible compared to other energies.

CONCLUDING REMARKS

The caleulations of both the conventional and the physicalemodel
approaches in this paper have used an electric field as a starting
point. The similarity of eleectric and magnetic equations, though, is
such that similar results would have been obtained if a magnetic field
had been used as a starting point. A long solenoid of uniform cross
section could have been used in place of the parallel.plate capacitor.
The classical expression for momentum density would again indicate a
variation of field momentum with field ordentation. The use of the |
physical-model approach would result in the same use of internal energy
for the non-flow approsch, and the same equality to the resulits of

classical electrodynamics for the flow treatment. The advantages found
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for the physicalemodel approach with eleciric fields will therefore also
be found with magnetic fields.

For the regime considered in this paper of a single electric or (by
implication) magnetic field mO'Vill’xg without acceleration at a velocity
small compared to that of light, the physical-model approach resolved
the energy and momentum discrepancies of a number of problems. The
conventional energy-flow and momentﬁm—densi'by expressions were found to
correspond to the flow treatmant of the physical-model approach. The
problems in which energy and momentum discrepancies were obtained wére
most conveniently approached with a non~flow treatment, The differeéence
between these two types of treatments is closely related to the
difference between intermal eﬁergy and enthalpy in thermodyanmics. The
lack of the flow-work concept in classlical electrodynamics might

therefore be considered the source of the electromagnetic-mass problem.
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